Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phenotypic plasticity, QTL mapping and genomic characterization of bud set in black poplar.

Identifieur interne : 002964 ( Main/Exploration ); précédent : 002963; suivant : 002965

Phenotypic plasticity, QTL mapping and genomic characterization of bud set in black poplar.

Auteurs : Francesco Fabbrini [Italie] ; Muriel Gaudet ; Catherine Bastien ; Giusi Zaina ; Antoine Harfouche ; Isacco Beritognolo ; Nicolas Marron ; Michele Morgante ; Giuseppe Scarascia-Mugnozza ; Maurizio Sabatti

Source :

RBID : pubmed:22471289

Descripteurs français

English descriptors

Abstract

BACKGROUND

The genetic control of important adaptive traits, such as bud set, is still poorly understood in most forest trees species. Poplar is an ideal model tree to study bud set because of its indeterminate shoot growth. Thus, a full-sib family derived from an intraspecific cross of P. nigra with 162 clonally replicated progeny was used to assess the phenotypic plasticity and genetic variation of bud set in two sites of contrasting environmental conditions.

RESULTS

Six crucial phenological stages of bud set were scored. Night length appeared to be the most important signal triggering the onset of growth cessation. Nevertheless, the effect of other environmental factors, such as temperature, increased during the process. Moreover, a considerable role of genotype × environment (G × E) interaction was found in all phenological stages with the lowest temperature appearing to influence the sensitivity of the most plastic genotypes.Descriptors of growth cessation and bud onset explained the largest part of phenotypic variation of the entire process. Quantitative trait loci (QTL) for these traits were detected. For the four selected traits (the onset of growth cessation (date2.5), the transition from shoot to bud (date1.5), the duration of bud formation (subproc1) and bud maturation (subproc2)) eight and sixteen QTL were mapped on the maternal and paternal map, respectively. The identified QTL, each one characterized by small or modest effect, highlighted the complex nature of traits involved in bud set process. Comparison between map location of QTL and P. trichocarpa genome sequence allowed the identification of 13 gene models, 67 bud set-related expressional and six functional candidate genes (CGs). These CGs are functionally related to relevant biological processes, environmental sensing, signaling, and cell growth and development. Some strong QTL had no obvious CGs, and hold great promise to identify unknown genes that affect bud set.

CONCLUSIONS

This study provides a better understanding of the physiological and genetic dissection of bud set in poplar. The putative QTL identified will be tested for associations in P. nigra natural populations. The identified QTL and CGs will also serve as useful targets for poplar breeding.


DOI: 10.1186/1471-2229-12-47
PubMed: 22471289
PubMed Central: PMC3378457


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phenotypic plasticity, QTL mapping and genomic characterization of bud set in black poplar.</title>
<author>
<name sortKey="Fabbrini, Francesco" sort="Fabbrini, Francesco" uniqKey="Fabbrini F" first="Francesco" last="Fabbrini">Francesco Fabbrini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S, Camillo de Lellis, Viterbo 01100, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S, Camillo de Lellis, Viterbo 01100</wicri:regionArea>
<wicri:noRegion>Viterbo 01100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gaudet, Muriel" sort="Gaudet, Muriel" uniqKey="Gaudet M" first="Muriel" last="Gaudet">Muriel Gaudet</name>
</author>
<author>
<name sortKey="Bastien, Catherine" sort="Bastien, Catherine" uniqKey="Bastien C" first="Catherine" last="Bastien">Catherine Bastien</name>
</author>
<author>
<name sortKey="Zaina, Giusi" sort="Zaina, Giusi" uniqKey="Zaina G" first="Giusi" last="Zaina">Giusi Zaina</name>
</author>
<author>
<name sortKey="Harfouche, Antoine" sort="Harfouche, Antoine" uniqKey="Harfouche A" first="Antoine" last="Harfouche">Antoine Harfouche</name>
</author>
<author>
<name sortKey="Beritognolo, Isacco" sort="Beritognolo, Isacco" uniqKey="Beritognolo I" first="Isacco" last="Beritognolo">Isacco Beritognolo</name>
</author>
<author>
<name sortKey="Marron, Nicolas" sort="Marron, Nicolas" uniqKey="Marron N" first="Nicolas" last="Marron">Nicolas Marron</name>
</author>
<author>
<name sortKey="Morgante, Michele" sort="Morgante, Michele" uniqKey="Morgante M" first="Michele" last="Morgante">Michele Morgante</name>
</author>
<author>
<name sortKey="Scarascia Mugnozza, Giuseppe" sort="Scarascia Mugnozza, Giuseppe" uniqKey="Scarascia Mugnozza G" first="Giuseppe" last="Scarascia-Mugnozza">Giuseppe Scarascia-Mugnozza</name>
</author>
<author>
<name sortKey="Sabatti, Maurizio" sort="Sabatti, Maurizio" uniqKey="Sabatti M" first="Maurizio" last="Sabatti">Maurizio Sabatti</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22471289</idno>
<idno type="pmid">22471289</idno>
<idno type="doi">10.1186/1471-2229-12-47</idno>
<idno type="pmc">PMC3378457</idno>
<idno type="wicri:Area/Main/Corpus">002A93</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002A93</idno>
<idno type="wicri:Area/Main/Curation">002A93</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002A93</idno>
<idno type="wicri:Area/Main/Exploration">002A93</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phenotypic plasticity, QTL mapping and genomic characterization of bud set in black poplar.</title>
<author>
<name sortKey="Fabbrini, Francesco" sort="Fabbrini, Francesco" uniqKey="Fabbrini F" first="Francesco" last="Fabbrini">Francesco Fabbrini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S, Camillo de Lellis, Viterbo 01100, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S, Camillo de Lellis, Viterbo 01100</wicri:regionArea>
<wicri:noRegion>Viterbo 01100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gaudet, Muriel" sort="Gaudet, Muriel" uniqKey="Gaudet M" first="Muriel" last="Gaudet">Muriel Gaudet</name>
</author>
<author>
<name sortKey="Bastien, Catherine" sort="Bastien, Catherine" uniqKey="Bastien C" first="Catherine" last="Bastien">Catherine Bastien</name>
</author>
<author>
<name sortKey="Zaina, Giusi" sort="Zaina, Giusi" uniqKey="Zaina G" first="Giusi" last="Zaina">Giusi Zaina</name>
</author>
<author>
<name sortKey="Harfouche, Antoine" sort="Harfouche, Antoine" uniqKey="Harfouche A" first="Antoine" last="Harfouche">Antoine Harfouche</name>
</author>
<author>
<name sortKey="Beritognolo, Isacco" sort="Beritognolo, Isacco" uniqKey="Beritognolo I" first="Isacco" last="Beritognolo">Isacco Beritognolo</name>
</author>
<author>
<name sortKey="Marron, Nicolas" sort="Marron, Nicolas" uniqKey="Marron N" first="Nicolas" last="Marron">Nicolas Marron</name>
</author>
<author>
<name sortKey="Morgante, Michele" sort="Morgante, Michele" uniqKey="Morgante M" first="Michele" last="Morgante">Michele Morgante</name>
</author>
<author>
<name sortKey="Scarascia Mugnozza, Giuseppe" sort="Scarascia Mugnozza, Giuseppe" uniqKey="Scarascia Mugnozza G" first="Giuseppe" last="Scarascia-Mugnozza">Giuseppe Scarascia-Mugnozza</name>
</author>
<author>
<name sortKey="Sabatti, Maurizio" sort="Sabatti, Maurizio" uniqKey="Sabatti M" first="Maurizio" last="Sabatti">Maurizio Sabatti</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Crosses, Genetic (MeSH)</term>
<term>Gene-Environment Interaction (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (physiology)</term>
<term>Principal Component Analysis (MeSH)</term>
<term>Quantitative Trait Loci (MeSH)</term>
<term>Seasons (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Temperature (MeSH)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse en composantes principales (MeSH)</term>
<term>Croisements génétiques (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Interaction entre gènes et environnement (MeSH)</term>
<term>Locus de caractère quantitatif (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Polymorphisme de nucléotide simple (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Saisons (MeSH)</term>
<term>Température (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Variation génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crosses, Genetic</term>
<term>Gene-Environment Interaction</term>
<term>Genetic Variation</term>
<term>Genome, Plant</term>
<term>Genotype</term>
<term>Phenotype</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Principal Component Analysis</term>
<term>Quantitative Trait Loci</term>
<term>Seasons</term>
<term>Signal Transduction</term>
<term>Temperature</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse en composantes principales</term>
<term>Croisements génétiques</term>
<term>Facteurs temps</term>
<term>Génome végétal</term>
<term>Génotype</term>
<term>Interaction entre gènes et environnement</term>
<term>Locus de caractère quantitatif</term>
<term>Phénotype</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Saisons</term>
<term>Température</term>
<term>Transduction du signal</term>
<term>Variation génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The genetic control of important adaptive traits, such as bud set, is still poorly understood in most forest trees species. Poplar is an ideal model tree to study bud set because of its indeterminate shoot growth. Thus, a full-sib family derived from an intraspecific cross of P. nigra with 162 clonally replicated progeny was used to assess the phenotypic plasticity and genetic variation of bud set in two sites of contrasting environmental conditions.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Six crucial phenological stages of bud set were scored. Night length appeared to be the most important signal triggering the onset of growth cessation. Nevertheless, the effect of other environmental factors, such as temperature, increased during the process. Moreover, a considerable role of genotype × environment (G × E) interaction was found in all phenological stages with the lowest temperature appearing to influence the sensitivity of the most plastic genotypes.Descriptors of growth cessation and bud onset explained the largest part of phenotypic variation of the entire process. Quantitative trait loci (QTL) for these traits were detected. For the four selected traits (the onset of growth cessation (date2.5), the transition from shoot to bud (date1.5), the duration of bud formation (subproc1) and bud maturation (subproc2)) eight and sixteen QTL were mapped on the maternal and paternal map, respectively. The identified QTL, each one characterized by small or modest effect, highlighted the complex nature of traits involved in bud set process. Comparison between map location of QTL and P. trichocarpa genome sequence allowed the identification of 13 gene models, 67 bud set-related expressional and six functional candidate genes (CGs). These CGs are functionally related to relevant biological processes, environmental sensing, signaling, and cell growth and development. Some strong QTL had no obvious CGs, and hold great promise to identify unknown genes that affect bud set.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This study provides a better understanding of the physiological and genetic dissection of bud set in poplar. The putative QTL identified will be tested for associations in P. nigra natural populations. The identified QTL and CGs will also serve as useful targets for poplar breeding.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22471289</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>09</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<PubDate>
<Year>2012</Year>
<Month>Apr</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Phenotypic plasticity, QTL mapping and genomic characterization of bud set in black poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>47</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-12-47</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The genetic control of important adaptive traits, such as bud set, is still poorly understood in most forest trees species. Poplar is an ideal model tree to study bud set because of its indeterminate shoot growth. Thus, a full-sib family derived from an intraspecific cross of P. nigra with 162 clonally replicated progeny was used to assess the phenotypic plasticity and genetic variation of bud set in two sites of contrasting environmental conditions.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Six crucial phenological stages of bud set were scored. Night length appeared to be the most important signal triggering the onset of growth cessation. Nevertheless, the effect of other environmental factors, such as temperature, increased during the process. Moreover, a considerable role of genotype × environment (G × E) interaction was found in all phenological stages with the lowest temperature appearing to influence the sensitivity of the most plastic genotypes.Descriptors of growth cessation and bud onset explained the largest part of phenotypic variation of the entire process. Quantitative trait loci (QTL) for these traits were detected. For the four selected traits (the onset of growth cessation (date2.5), the transition from shoot to bud (date1.5), the duration of bud formation (subproc1) and bud maturation (subproc2)) eight and sixteen QTL were mapped on the maternal and paternal map, respectively. The identified QTL, each one characterized by small or modest effect, highlighted the complex nature of traits involved in bud set process. Comparison between map location of QTL and P. trichocarpa genome sequence allowed the identification of 13 gene models, 67 bud set-related expressional and six functional candidate genes (CGs). These CGs are functionally related to relevant biological processes, environmental sensing, signaling, and cell growth and development. Some strong QTL had no obvious CGs, and hold great promise to identify unknown genes that affect bud set.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This study provides a better understanding of the physiological and genetic dissection of bud set in poplar. The putative QTL identified will be tested for associations in P. nigra natural populations. The identified QTL and CGs will also serve as useful targets for poplar breeding.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fabbrini</LastName>
<ForeName>Francesco</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S, Camillo de Lellis, Viterbo 01100, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gaudet</LastName>
<ForeName>Muriel</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bastien</LastName>
<ForeName>Catherine</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zaina</LastName>
<ForeName>Giusi</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Harfouche</LastName>
<ForeName>Antoine</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Beritognolo</LastName>
<ForeName>Isacco</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Marron</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Morgante</LastName>
<ForeName>Michele</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Scarascia-Mugnozza</LastName>
<ForeName>Giuseppe</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sabatti</LastName>
<ForeName>Maurizio</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>04</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003433" MajorTopicYN="N">Crosses, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059647" MajorTopicYN="N">Gene-Environment Interaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="Y">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025341" MajorTopicYN="N">Principal Component Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="Y">Quantitative Trait Loci</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012621" MajorTopicYN="N">Seasons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>10</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>04</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22471289</ArticleId>
<ArticleId IdType="pii">1471-2229-12-47</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-12-47</ArticleId>
<ArticleId IdType="pmc">PMC3378457</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2006 May 19;312(5776):1040-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Feb;154(2):837-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10655234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1991 Apr;6(4):122-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21232440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2005 Jan;59(1):81-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15792229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Dec;15(12):684-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20970368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2007 Dec;61(12):2849-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17908247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Apr;46(2):317-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16623893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 May;21(5):1341-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19482971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Nov;186(3):1033-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(1):49-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17924949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2011 Mar;4(2):159-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2009 Feb;47(2):105-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19097801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Apr;178(4):2217-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18245834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2006 Jul;276(1):13-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16680434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Jul;149(3):1605-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9649547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2370-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17693531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Oct;192(2):378-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21770946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Jan;18(1):29-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biometeorol. 2000 Aug;44(2):67-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10993560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Mar;172(3):1845-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16361240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Nov;71(4-5):403-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19653104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2008 Mar 22;275(1635):649-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18211875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Apr;11(2):149-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18262830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(2):303-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19338634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Dec;137(4):509-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19627554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Appl. 2008 Feb;1(1):95-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Dec;168(3):589-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16313642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 12;296(5566):285-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11951029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):37-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20213333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):49-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20191309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 May;31(5):472-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21636689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jan;189(1):106-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21039557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Dec;32(12):1724-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19671097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 21;101(38):13951-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Feb;45(3):423-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16412087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Mar;34(3):480-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118421</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bastien, Catherine" sort="Bastien, Catherine" uniqKey="Bastien C" first="Catherine" last="Bastien">Catherine Bastien</name>
<name sortKey="Beritognolo, Isacco" sort="Beritognolo, Isacco" uniqKey="Beritognolo I" first="Isacco" last="Beritognolo">Isacco Beritognolo</name>
<name sortKey="Gaudet, Muriel" sort="Gaudet, Muriel" uniqKey="Gaudet M" first="Muriel" last="Gaudet">Muriel Gaudet</name>
<name sortKey="Harfouche, Antoine" sort="Harfouche, Antoine" uniqKey="Harfouche A" first="Antoine" last="Harfouche">Antoine Harfouche</name>
<name sortKey="Marron, Nicolas" sort="Marron, Nicolas" uniqKey="Marron N" first="Nicolas" last="Marron">Nicolas Marron</name>
<name sortKey="Morgante, Michele" sort="Morgante, Michele" uniqKey="Morgante M" first="Michele" last="Morgante">Michele Morgante</name>
<name sortKey="Sabatti, Maurizio" sort="Sabatti, Maurizio" uniqKey="Sabatti M" first="Maurizio" last="Sabatti">Maurizio Sabatti</name>
<name sortKey="Scarascia Mugnozza, Giuseppe" sort="Scarascia Mugnozza, Giuseppe" uniqKey="Scarascia Mugnozza G" first="Giuseppe" last="Scarascia-Mugnozza">Giuseppe Scarascia-Mugnozza</name>
<name sortKey="Zaina, Giusi" sort="Zaina, Giusi" uniqKey="Zaina G" first="Giusi" last="Zaina">Giusi Zaina</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="Fabbrini, Francesco" sort="Fabbrini, Francesco" uniqKey="Fabbrini F" first="Francesco" last="Fabbrini">Francesco Fabbrini</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002964 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002964 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22471289
   |texte=   Phenotypic plasticity, QTL mapping and genomic characterization of bud set in black poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22471289" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020